Seepage Control in a High Concrete Face-Rock Fill Dam Based on the Node Virtual Flow Method

نویسندگان

  • Shou-Kai Chen
  • Xiaoyue Zhang
چکیده

Abstract: The seepage control system of a high Concrete Face Rock-Fill Dam (CFRD) may have anti-seepage deficiencies during both construction and operation. In order to solve these, the three-dimensional Finite Element Method (FEM) model was built based on dam body filling, anti-seepage system, defect location and bedrock distribution. The seepage field simulation and computation were carried out using an improved node virtual flux method and the zero-thickness crack model theory. The water head distribution, seepage lines and dam leakage field were obtained by simulation under different conditions, and the seepage characteristics during construction and operation were analyzed systematically. Taking a high CFRD as an example, the results showed that during the flood-control construction period, the incomplete nature of the dam face slab can lead to seepage damage near the second seepage control line. Moreover, during operation period; the seepage control system was still effective when the dam face slab was incomplete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Analysis of the Interaction of Concrete Face and Rockfill Part in Concrete Faced Rockfill Dams

Introduction Concrete faced rockfill dams have been considered in recent years more than other types of dams due to their low dependency on the bed and the shape of the valley, as well as the simpler construction technology. In this regard, rockfill dams are a suitable substitute for embankment dams because of higher stability of the body and the availability of rock aggregates. On the other h...

متن کامل

Numerical Simulation of Seepage Flow through Dam Foundation Using Smooth Particle Hydrodynamics Method (RESEARCH NOTE)

In this paper, a mesh-free approach called smooth particle hydrodynamics (SPH) is proposed to analyze the seepage problem in porous media. In this method, computational domain is discredited by some nodes, and there is no need for background mesh; therefore, it is a truly meshless method. The method was applied to analyze seepage flow through a concrete dam foundation. Using the SPH method, the...

متن کامل

Seepage Analysis through Rockfill Dams by Finite Element Method in a Fixed Gird

In this paper, Forchheimer equation is used as the constitutive equation for flow through rockfill, and the non-linear two-dimensional governing equation with free surface is solved by a new finite element method in a fixed grid. The model is verified by applying it to different flow conditions. The first scenario, which is assumed to be one-dimensional with analytical solution available for it...

متن کامل

Seepage Analysis through Rockfill Dams by Finite Element Method in a Fixed Gird

In this paper, Forchheimer equation is used as the constitutive equation for flow through rockfill, and the non-linear two-dimensional governing equation with free surface is solved by a new finite element method in a fixed grid. The model is verified by applying it to different flow conditions. The first scenario, which is assumed to be one-dimensional with analytical solution available for it...

متن کامل

Determination of discharge coefficient of inbuilt spillway in rock- fill dams

According to the former researcher’s presented relations for flow through rock-fill porous media, the effects of physical characteristics was not studied separately. Hence, due to the application of these relations, physical characteristics of porous materials effect must be investigated separately. In various constructed physical models of porous media, the effect of several variables such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016